Contraction-induced Mmp13 and -14 expression by goat articular chondrocytes in collagen type I but not type II gels.

نویسندگان

  • Agnes D Berendsen
  • Lucienne A Vonk
  • Behrouz Zandieh-Doulabi
  • Vincent Everts
  • Ruud A Bank
چکیده

Collagen gels are promising scaffolds to prepare an implant for cartilage repair but several parameters, such as collagen concentration and composition as well as cell density, should be carefully considered, as they are reported to affect phenotypic aspects of chondrocytes. In this study we investigated whether the presence of collagen type I or II in gel lattices affects matrix contraction and relative gene expression levels of matrix proteins, MMPs and the subsequent degradation of collagen by goat articular chondrocytes. Only floating collagen I gels, and not those attached or composed of type II collagen, contracted during a culture period of 12 days. This coincided with an upregulation of both Mmp13 and -14 gene expression, whereas Mmp1 expression was not affected. The release of hydroxyproline in the culture medium, indicating matrix degradation, was increased five-fold in contracted collagen I gels compared to collagen II gels without contraction. Furthermore, blocking contraction of collagen I gels by cytochalasin B inhibited Mmp13 and -14 expression and the release of hydroxyproline. The expression of cartilage-specific ECM genes was decreased in contracted collagen I gels, with increased numbers of cells with an elongated morphology, suggesting that matrix contraction induces dedifferentiation of chondrocytes into fibroblast-like cells. We conclude that the collagen composition of the gels affects matrix contraction by articular chondrocytes and that matrix contraction induces an increased Mmp13 and -14 expression as well as matrix degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison between Chondrogenic Markers of Differentiated Chondrocytes from Adipose Derived Stem Cells and Articular Chondrocytes In Vitro

  Objective(s): Osteoarthritis is one of the most common diseases in middle-aged population in the world. Cartilage tissue engineering (TE) has been presented as an effort to introduce the best combination of cells, biomaterial scaffolds and stimulating growth factors to produce a cartilage tissue similar to the natural articular cartilage. In this study, the chondrogenic potential of adipose d...

متن کامل

Costal Versus Articular Chondrocytes in Alginate Three-Dimensional Cultures

Given the difficulties in accessing articular cartilage as a source of chondrocytes to be used in fabricating cartilage constructs, alternative sources are required. The present study examined chondrocytes from costal cartilage for their suitability in cartilage tissue engineering. Chondrocytes isolated from rat knee and rib hyaline cartilage were separately mixed with alginate and placed in a ...

متن کامل

Quantitative Analysis of the Proliferation and Differentiation of Rat Articular Chondrocytes in Alginate 3D Culture

Background: While articular chondrocytes are among those appropriate candidates for cartilage regeneration, the cell dedifferentiation during monolayer culture has limited their application. Several investigations have indicated the usefulness of alginate, but the topic of proliferation and differentiation of chondrocytes in alginate culture has still remained controversial. Methods: Rat articu...

متن کامل

1,25-dihydroxyvitamin D3 Activates MMP13 Gene Expression in Chondrocytes through p38 MARK Pathway

Osteoarthritis (OA) is the most prevalent degenerative joint disease. The highly regulated balance of matrix synthesis and degradation is disrupted in OA, leading to progressive breakdown of articular cartilage. The molecular events and pathways involved in chondrocyte disfunction of cartilage in OA are not fully understood. It is known that 1,25-dihydroxyvitamin D₃(1,25-(OH)2D3) is synthesized...

متن کامل

Study of Differentiation Potential of the Dedifferentiated Chondrocytes From Rat Articular Cartilage into Skeletal Cell Lineages

Purpose: Dedifferentiation of the chondrocyte from rat articular cartilage with multiple subcultures and study of the redifferentiation potential of the cells into bone, cartilage and fat cell lineages. Materials and Methods: In this experimental study, chondrocytes from rat articular cartilage were isolated and expanded through several successive subcultures during which the expression levels ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of tissue engineering and regenerative medicine

دوره 6 9  شماره 

صفحات  -

تاریخ انتشار 2012